Skip to content

How Optionsbleed wasn't found in 2014

Shortly after I published details about the Optionsbleed bug I learned about something quite surprising: Others had already discovered this bug before, but have neither pinned it down to Apache nor recognized that it is a security vulnerability.

A paper published in 2014 on Arxiv titled "Support for Various HTTP Methods on the Web" mentions servers sending malformed Allow headers. It has examples listed that very clearly look like the output you get from a server vulnerable to Optionsbleed.

This alone would be noteworthy enough, but there's something that makes this even more surprising. This paper was published in May 2014, about a month after the Heartbleed bug was found. Heartbleed gained a lot of attention, not just in the tech scene, it was widely covered in the mainstream media. It can be assumed that almost everyone working in IT had heard of it.

So we have a situation where a major bug hit the news - and several people must have had evidence of a very similar bug in front of their eyes shortly afterwards. Yet nobody has recognized it as such. One of the authors mentioned in a comment that they hadn't looked at it from a security perspective, but still you'd think that someone should have noticed.

While it's always problematic to interpret too much into single anecdotes, it still makes me wonder things. Are we just terribly bad at explaining security issues? My personal impression is that Heartbleed is actually an issue that is relatively simple to grasp (of course best explained by XKCD). Going from there to the idea that seeing random garbage in HTTP headers indicates a very similar bug doesn't seem so far fetched to me. But the facts seem to disprove that.

Optionsbleed - HTTP OPTIONS method can leak Apache's server memory

optionsbleedIf you're using the HTTP protocol in everday Internet use you are usually only using two of its methods: GET and POST. However HTTP has a number of other methods, so I wondered what you can do with them and if there are any vulnerabilities.

One HTTP method is called OPTIONS. It simply allows asking a server which other HTTP methods it supports. The server answers with the "Allow" header and gives us a comma separated list of supported methods.

A scan of the Alexa Top 1 Million revealed something strange: Plenty of servers sent out an "Allow" header with what looked like corrupted data. Some examples:

That clearly looked interesting - and dangerous. It suspiciously looked like a "bleed"-style bug, which has become a name for bugs where arbitrary pieces of memory are leaked to a potential attacker. However these were random servers on the Internet, so at first I didn't know what software was causing this.

Sometimes HTTP servers send a "Server" header telling the software. However one needs to be aware that the "Server" header can lie. It's quite common to have one HTTP server proxying another. I got all kinds of different "Server" headers back, but I very much suspected that these were all from the same bug.

I tried to contact the affected server operators, but only one of them answered, and he was extremely reluctant to tell me anything about his setup, so that wasn't very helpful either.

However I got one clue: Some of the corrupted headers contained strings that were clearly configuration options from Apache. It seemed quite unlikely that those would show up in the memory of other server software. But I was unable to reproduce anything alike on my own Apache servers. I also tried reading the code that put together the Allow header to see if I can find any clues, but with no success. So without knowing any details I contacted the Apache security team.

Fortunately Apache developer Jacob Champion digged into it and figured out what was going on: Apache supports a configuration directive Limit that allows restricting access to certain HTTP methods to a specific user. And if one sets the Limit directive in an .htaccess file for an HTTP method that's not globally registered in the server then the corruption happens. After that I was able to reproduce it myself. Setting a Limit directive for any invalid HTTP method in an .htaccess file caused a use after free error in the construction of the Allow header which was also detectable with Address Sanitizer. (However ASAN doesn't work reliably due to the memory allocation abstraction done by APR.)


What's Optionsbleed?

Optionsbleed is a use after free error in Apache HTTP that causes a corrupted Allow header to be constructed in response to HTTP OPTIONS requests. This can leak pieces of arbitrary memory from the server process that may contain secrets. The memory pieces change after multiple requests, so for a vulnerable host an arbitrary number of memory chunks can be leaked.

The bug appears if a webmaster tries to use the "Limit" directive with an invalid HTTP method.

Example .htaccess:

<Limit abcxyz>

How prevalent is it?

Scanning the Alexa Top 1 Million revealed 466 hosts with corrupted Allow headers. In theory it's possible that other server software has similar bugs. On the other hand this bug is nondeterministic, so not all vulnerable hosts may have been caught.

So it only happens if you set a quite unusual configuration option?

There's an additional risk in shared hosting environments. The corruption is not limited to a single virtual host. One customer of a shared hosting provider could deliberately create an .htaccess file causing this corruption hoping to be able to extract secret data from other hosts on the same system.

I can't reproduce it!

Due to its nature the bug doesn't appear deterministically. It only seems to appear on busy servers. Sometimes it only appears after multiple requests.

Does it have a CVE?


I'm seeing Allow headers containing HEAD multiple times!

This is actually a different Apache bug (#61207) that I found during this investigation. It causes HEAD to appear three times instead of once. However it's harmless and not a security bug.

Launchpad also has a harmless bug that produces a malformed Allow header, using a space-separated list instead of a comma-separated one.

How can I test it?

A simple way is to use Curl in a loop and send OPTIONS requests:

for i in {1..100}; do curl -sI -X OPTIONS|grep -i "allow:"; done

Depending on the server configuration it may not answer to OPTIONS requests on some URLs. Try different paths, HTTP versus HTTPS hosts, non-www versus www etc. may lead to different results.

Please note that this bug does not show up with the "*" OPTIONS target, you need a specific path.

Here's a python proof of concept script.

What shall I do?

If you run an Apache web server you should update. Most distributions should have updated packages by now or very soon. A patch can be found here. A patch for Apache 2.2 is available here (thanks to Thomas Deutschmann for backporting it).

Unfortunately the communication with the Apache security team wasn't ideal. They were unable to provide a timeline for a coordinated release with a fix, so I decided to define a disclosure date on my own without an upstream fix.

If you run an Apache web server in a shared hosting environment that allows users to create .htaccess files you should drop everything you are doing right now, update immediately and make sure you restart the server afterwards.

Is this as bad as Heartbleed?

No. Although similar in nature, this bug leaks only small chunks of memory and more importantly only affects a small number of hosts by default.

It's still a pretty bad bug, particularly for shared hosting environments.


Analysis by Apache developer William A. Rowe Jr.

Distribution updates:
Gentoo: Commit (2.2.34 / 2.4.27-r1 fixed), Bug
NetBSD/pkgsrc: Commit
Guix: Commit
Arch Linux: Commit (2.4.27-2 fixed)
Slackware: Advisory
NixOS: Commit
Debian: Security Tracker, Advisory (2.4.10-10+deb8u11, 2.4.25-3+deb9u3)
Ubuntu: Advisory (2.4.25-3ubuntu2.3, 2.4.18-2ubuntu3.5, 2.4.7-1ubuntu4.18)

Apache-Webserver blutet (
Apache Webserver: "Optionsbleed"-Bug legt Speicherinhalte offen (heise online)
Risks Limited With Latest Apache Bug, Optionsbleed (Threatpost)
Apache “Optionsbleed” vulnerability – what you need to know (Naked Security)
Apache bug leaks contents of server memory for all to see—Patch now (Ars Technica)

Six year old PDF loop bug affects most major implementations

Endless LoopI recently did some testing of the qpdf library with afl and libfuzzer. I discovered an input sample that would generate a high CPU load spike and eventually after several minutes cause an out of memory error. It looked like the parser was caught in some kind of endless loop.

This reminded me of something. In 2011 at the Chaos Communication Camp Andreas Bogk gave a talk about creating a formally verified PDF parser with Ocaml and Coq. In that talk he mentioned that one could create a PDF file with cross-referencing xref tables. A naive parser would get caught in an endless loop. He showed that the evince thumbnailer process was affected by this.

This was eventually fixed in evince's underlying rendering library poppler. But it seems this issue hasn't reached many other PDF parser libraries. The qpdf issue I had seen was exactly the same bug. The sample file can be found here. If you follow that link you'll immediately notice that Github's Javascript PDF viewer is also affected.

How about Mozilla Firefox? Affected. (They use pdf.js, which is the same code Github uses.) What about Chrome / Chromium, which uses a library called PDFium? Affected. (Notably they already had a test PDF for this, but the function that causes the loop wasn't tested.) Microsoft Edge? Affected. Ghostscript, which is the other major PDF parser used by many free and open source tools? Also affected. For completeness, Adobe Reader and Apple's OS X internal PDF viewer were unaffected.

To make this clear: This isn't a major security issue, the impact is a denial of service. But it is certainly something undesirable that should be fixed.

It is remarkable that a bug that was discovered six years ago affected the majority of widely used PDF implementations. But it falls into a pattern of IT security: Very often discovering security issues means rediscovering old issues. In general this is a difficult problem to solve, as it touches complex questions about knowledge transfer.

However in this specific case - an input file that causes a bug in one implementation also causes the same bug in other implementations - there are things that can be done.

I report fuzzing-related bugs on a very regular basis and I always share a sample file that triggers the bug. In the best cases the maintainers of the affected software take the bug triggering sample and use it in their test suite. I think this should be a standard practice.

However that only prevents regressions in the same software. But maintainers of parsers for common file formats could also take a look at their competitors and check their test suites. While the PDF standard probably isn't well defined enough to allow a visual comparison of rendering output, it's surely obvious that no input file should cause a crash, an invalid memory access or an endless loop.

Looking at the common PDF libraries the situation with test cases was quite mixed. Mozilla's pdf.js had the most extensive collection of files, many of them examples from previous bugs. However one should know that about a third of them are not part of their code repository. They're referenced as links (all of them pointing to their own bug tracker or to the Internet archive, so I guess they're reasonably stable).

PDFium, used by Google Chrome, has a far less extensive test suite with only 96 PDF files. I have reported a bunch of PDFium bugs myself in the past (Examples: [1], [2], [3]) and the test cases I provided never got added to the test suite.

QPDF is doing very well: They ship 278 test PDFs and for all the bugs I reported lately they added the provided sample files.

Ghostscript has only three PDF example files in its code (other PDFs in the code seem to be documentation, not test cases). Poppler's code has no PDFs bundled at all. They have a separate test repository for that with 35 files, but it hasn't been updated since 2009. There's definitely lots of room for improvement in that area.

Image Source